Loading [MathJax]/jax/output/HTML-CSS/jax.js

Scholarpedia is supported by Brain Corporation

User:Jan A. Sanders/An introduction to Lie algebra cohomology/Lecture 2

From Scholarpedia
Jump to: navigation, search

    Back to the first lecture

    On to the third lecture

    Central extensions

    The definition of projective is important when R is not \mathbb{R}\ , \mathbb{C} or in general a field of characteristic zero, or when the dimension of the Lie algebra is not finite, otherwise it can be skipped.

    definition - projective

    A module \mathfrak{g} is projective if for every surjective morphism of modules \alpha:\mathfrak{k}\rightarrow\mathfrak{g}\rightarrow 0 and every morphism \beta:\mathfrak{h}\rightarrow\mathfrak{g}\ , there exists a morphism \gamma:\mathfrak{h}\rightarrow\mathfrak{k} such that \beta=\alpha\gamma\ .

    In particular, if \mathfrak{g} is projective and \alpha surjective, there exists a \gamma:\mathfrak{g}\rightarrow\mathfrak{k} such that id_{\mathfrak{g}}=\alpha\gamma\ , that is, \gamma is a section of \alpha\ .

    When \mathfrak{g} is free, that is, \mathfrak{g} has an R-basis \{g_\iota\}_{\iota\in I}\ , one can find for each g_\iota a preimage k_\iota under \alpha\ .

    If \beta(h)=\sum_{\iota\in I} b_\iota g_\iota, b_\iota\in R\ , (finite sum, since \{g_\iota\}_{\iota\in I} is a basis) one defines \gamma(h)=\sum_{\iota\in I} b_\iota k_\iota\ .

    When \mathrm{rank}_R \mathfrak{g}=\#I<\infty this can be done explicitly.

    If R is a field with characteristic zero, it suffices to require \mathrm{dim}_R \mathfrak{g}<\infty in order to conclude to the existence of sections.

    Consider the exact sequence of Lie algebras with Lie algebra morphisms

    \iota \qquad \quad \ p

    \tag{1} 0 \quad \rightarrow \quad \mathfrak{a} \quad \rightarrow \quad \mathfrak{k} \quad \rightarrow \quad \mathfrak{g} \quad \rightarrow 0 \ .


    problem statement

    If \mathfrak{g} is projective as an R-module, is there a section of p which is also a Lie algebra morphism, that is, is it also projective as a Lie algebra?

    To answer this question, first assume \mathfrak{a} to be abelian, that is, [x,y]=0 for all x,y\in\mathfrak{a}\ .

    Let \sigma_1 be a section, but not necessarily a Lie algebra morphism (Exists, since \mathfrak{g} is projective).

    Define \sigma_2\in C_{\wedge}^2(\mathfrak{g},\mathfrak{k})\ , (antisymmetric 2-forms) by \tag{2} \sigma_2(x,y)=[\sigma_1(x),\sigma_1(y)]_{\mathfrak{k}}-\sigma_1([x,y]_{\mathfrak{g}}).

    One has \tag{3} p \sigma_2(x,y)=p[\sigma_1(x),\sigma_1(y)]_{\mathfrak{k}}-p\sigma_1([x,y]_{\mathfrak{g}})=[p\sigma_1(x),p\sigma_1(y)]_{\mathfrak{g}}-[x,y]_{\mathfrak{g}}=0.

    Since \sigma_2(x,y)\in\ker p=\mathrm{im\ }\iota\ , one can define a_2\in C_{\wedge}^2(\mathfrak{g},\mathfrak{a}) by \tag{4} \iota(a_2(x,y))=\sigma_2(x,y).

    Now define d_1:\mathfrak{g}\rightarrow End(\mathfrak{a}) by \tag{5} \iota(d_1(x)a)=[\sigma_1(x),\iota(a)]_{\mathfrak{k}}

    This is well-defined since, for instance, p[\sigma_1(x),\iota(a)]_{\mathfrak{k}}=[p\sigma_1(x),p\iota(a)]_{\mathfrak{g}}=0\ .

    Moreover, d_1 is a representation, since \iota(d_1([x,y]_{\mathfrak{g}})a) = [\sigma_1([x,y]),\iota(a)]_{\mathfrak{k}}\ :

    = -[\sigma_2(x,y),\iota(a)]_{\mathfrak{k}} +[[\sigma_1(x),\sigma_1(y)]_{\mathfrak{k}},\iota(a)]_{\mathfrak{k}}\ :
    = -[\iota a_2(x,y),\iota(a)]_{\mathfrak{k}} +[\sigma_1(x),[\sigma_1(y),\iota(a)]_{\mathfrak{k}}]_{\mathfrak{k}}-[\sigma_1(y),[\sigma_1(x),\iota(a)]_{\mathfrak{k}}]_{\mathfrak{k}}\ :
    =- \iota[a_2(x,y),a]_{\mathfrak{a}}+[\sigma_1(x),\iota(d_1(y)a)]_{\mathfrak{k}}-[\sigma_1(y),\iota(d_1(x)a)]_{\mathfrak{k}}\ :
    = \iota(d_1(x)d^{(0)}(y)a) -\iota(d_1(y)d_1(x)a)

    or d_1([x,y]_{\mathfrak{g}})=[d_1(x),d_1(y)]_{\mathfrak{k}}\ .

    In the sequel we drop the subscript of the bracket.

    Suppose now there exists a \delta\sigma_1\in C^1(\mathfrak{g},\mathfrak{k}) such that \sigma_1+\delta\sigma_1 is a Lie algebra homomorphism and a section of p\ . Then x=p(\sigma_1+\delta\sigma_1)(x)=p\sigma_1(x)+p \delta\sigma_1(x)=x+p \delta\sigma_1(x), implying that \delta\sigma_1 (x)\in\ker(p)=\mathrm{im\ }\iota\ . Define a_1\in C^1(\mathfrak{g},\mathfrak{a}) by \iota a_1(x)=\delta\sigma_1 (x)\ . Then (by assumption!) 0 =(\sigma_1+\delta\sigma_1)([x,y])-[(\sigma_1+\delta\sigma_1)(x),(\sigma_1+\delta\sigma_1)(y)]\ : =\sigma_1([x,y])+\delta\sigma_1([x,y])-[\sigma_1(x),\sigma_1(y)]-[\delta\sigma_1(x),\sigma_1(y)]-[\sigma_1(x),\delta\sigma_1(y)]-[\delta\sigma_1(x),\delta\sigma_1(y)]\ :

    = -\sigma_2(x,y) +\delta\sigma_1([x,y])-[\iota a_1(x),\sigma_1(y)]-[\sigma_1(x),\iota a_1(y)]-[\iota a_1(x),\iota a_1(y)]\ : = -\iota(a_2(x,y)+(d_1(x)a_1(y)-d_1(y)a_1(x)-a_1([x,y])-[a_1(x),a_1(y)])\ : = -\iota((a_2+d^1 a_1)(x,y)). This implies that the existence of such a \delta\sigma_1 is equivalent to a_2\in\mathrm{im\ }d^1\ .

    On the other hand, if it would turn out that d^2 a_2\neq 0\ , this would be a definite obstruction of the existence of such a \delta\sigma_1\ .

    We can, however, rule out the last possibility. \iota d^2 a_2(x,y,z)= \iota d_1(x)a_2(y,z) -\iota d_1(y)a_2(x,z) +\iota d_1(z)a_2(x,y)-\iota a_2([x,y],z)-\iota a_2(y,[x,z])+\iota a_2(x,[y,z])\ :

    =-[\sigma_1(x),\sigma_2(y,z)]-[\sigma_1(y),\sigma_2(x,z)]-[\sigma_2(x,y),\sigma_1(z)]-\sigma_2([x,y],z)-\sigma_2(y,[x,z])+\sigma_2(x,[y,z])\ :
    =[\sigma(x),\sigma([y,z])-[\sigma(y),\sigma(z)]]-[\sigma(y),\sigma([x,z])-[\sigma(x),\sigma(z)]]-[\sigma([x,y])-[\sigma(x),\sigma(y)],\sigma(z)]\ :
    -\sigma_1([[x,y],z])+[\sigma_1([x,y]),\sigma_1(z)]-\sigma_1([y,[x,z]])+[\sigma_1(y),\sigma_1([x,z]]+\sigma_1([x,[y,z]])-[\sigma_1(x),\sigma_1([y,z])]\ :
    = -[\sigma(x),[\sigma(y),\sigma(z)]]+[\sigma(y),[\sigma(x),\sigma(z)]] +[[\sigma(x),\sigma(y)],\sigma(z)] -\sigma_1([[x,y],z]+[y,[x,z]]-[x,[y,z]]) \ :
    =0.

    It follows that d^2 a_2=0\ .

    On to the third lecture

    Back to the first lecture

    Personal tools
    Namespaces

    Variants
    Actions
    Navigation
    Focal areas
    Activity
    Tools