Scholarpedia is supported by Brain Corporation
An introduction to Lie algebra cohomology/saras/lecture 1
Contents |
Introduction
Let G be a group with identity e\ .
Morphism (Group homomorphism)
Let G\ , H be two groups; Let \phi:G\rightarrow H be a map. If \phi(g_1\cdot g_2)=\phi(g_1)\circ\phi(g_2)\ , where \cdot is the operation on G and \circ is the operation on H, then \phi is a group homorphism.
Linear forms
Let A be a module. The space of n-linear forms, with arguments in G and values in A\ , is denoted by C^n(G,A)\ .
Representations
Let A be a module or a vector space; d^{(0)}:G\rightarrow End(A) is a representation of G in A if
- d^{(0)}(g_1 \cdot g_2)=d^{(0)}(g_1),d^{(0)}(g_2),\quad g_1, g_2\in G\ .
Example of a representation
The coboundary operator
We now define the coboundary operators d^n\ : Let a\in A=C^0(G,A)\ . Then define d^0 a\in C^1(G,A) by
- (d^0 a) (g)=ga-a\ , g\in G\ .
Thus d^0 :C^0(G,A)\rightarrow C^1(G,A)\ . Let b\in C^1(G,A)\ . Then define d^1 b\in C^2(G,A) by* (d^1 b)(g_1,g_2)=g_1 b(g_2)-b(g_1 g_2)+b(g_1)\ . Thus d^1:C^1(G,A)\rightarrow C^2(G,A)\ . One checks that d^1d^0=0\ : d^1d^0 a(g_1,g_2)=g_1d^0 a(g_2)-d^0 a(g_1g_2)+d^0 a(g_1)=g_1g_2 a- g_1a-g_1g_2 a+a+g_1 a-a=0.
In general, when one has defined d^i:C^i(G,A)\rightarrow C^{i+1}(G,A) such that d^{i+1}d^i=0\ , then one calls d^\cdot a coboundary operator.
Exercise
Show that d^2 d^1=0\ .