Loading web-font TeX/Math/Italic

Scholarpedia is supported by Brain Corporation

Bautin bifurcation

From Scholarpedia
John Guckenheimer and Yuri A. Kuznetsov (2007), Scholarpedia, 2(5):1853. doi:10.4249/scholarpedia.1853 revision #91035 [link to/cite this article]
Jump to: navigation, search
Post-publication activity

Curator: John Guckenheimer

Figure 1: Generalized Hopf (Bautin) bifurcation in the planar system \dot{r}=r(\beta_1 + \beta_2 r^2 - r^4),\ \dot{\varphi}=1 \ . The vertical axis corresponds to the Andronov-Hopf bifurcation (supercritical at H_{-} and subcritical at H_{+}); the curve LPC corresponds to the saddle-node bifurcation of periodic orbits.

The Bautin bifurcation is a bifurcation of an equilibrium in a two-parameter family of autonomous ODEs at which the critical equilibrium has a pair of purely imaginary eigenvalues and the first Lyapunov coefficient for the Andronov-Hopf bifucation vanishes. This phenomenon is also called the generalized Hopf (GH) bifurcation.

The bifurcation point separates branches of sub- and supercritical Andronov-Hopf bifurcations in the parameter plain. For nearby parameter values, the system has two limit cycles which collide and disappear via a saddle-node bifurcation of periodic orbits.

Contents

Definition

Consider an autonomous system of ordinary differential equations (ODEs) \tag{1} \dot{x}=f(x,\alpha),\ \ \ x \in {\mathbb R}^n

depending on two parameters \alpha \in {\mathbb R}^2\ , where f is smooth.

  • Suppose that for all sufficiently small \|\alpha\| the system has an equilibrium x=0\ .
  • Further assume that its Jacobian matrix A(\alpha)=f_x(0,\alpha) has one pair of complex eigenvalues

\lambda_{1,2}(\alpha)=\mu(\alpha) \pm i\omega(\alpha) such that \mu(0)=0 and \omega(0)=\omega_0>0\ .

This bifurcation is characterized by two bifurcation conditions {\rm Re}\ \lambda_{1,2}=0 and l_1(0) = 0 (has codimension two) and appears generically in two-parameter families of smooth ODEs.

Generically, \alpha=0 is the origin in the parameter plane of

Moreover, these bifurcations are nondegenerate and no other bifurcation occur in a small fixed neighbourhood of x=0 for parameter values sufficiently close to \alpha=0\ . In this neighbourhood, the system has at most one equilibrium and two limit cycles.

Two-dimensional Case

To describe the Bautin bifurcation analytically, consider the system (1) with n=2\ , \dot{x} = f(x,\alpha), \ \ \ x \in {\mathbb R}^2 \ .

If the following nondegeneracy conditions hold:

  • (GH.1) l_2(0)\neq 0\ , where l_2(0) is the second Lyapunov coefficient (see below);
  • (GH.2) the map \alpha \mapsto (\mu(\alpha),l_1(\alpha)) is regular at \alpha=0 \ , where l_1(\alpha) is the parameter-dependent first Lyapunov coefficient (see below),

then this system is locally topologically equivalent near the origin to the normal form \dot{y}_1 = \beta_1 y_1 - y_2 + \beta_2 y_1(y_1^2+y_2^2) + \sigma y_1(y_1^2+y_2^2)^2 \ ,

\dot{y}_2 = y_1 + \beta_1 y_2 + \beta_2 y_2(y_1^2+y_2^2) + \sigma y_2(y_1^2+y_2^2)^2 \ ,
where y=(y_1,y_2)^T \in {\mathbb R}^2,\ \beta \in {\mathbb R}^2\ , and \sigma= {\rm sign}\ l_2(0) = \pm 1\ . This normal form is particularly simple in polar coordinates (r,\varphi), where it takes the form: \dot{r} = r(\beta_1 r + \beta_2 r^2 + \sigma r^4) \ ,
\dot{\varphi} = 1

The local bifurcation diagram of the normal form with \sigma=-1 is presented in Figure 1. The point \beta=0 separates two branches of the Andronov-Hopf bifurcation curve: the half-line H_{-}=\{(\beta_1,\beta_2): \beta_1=0,\ \beta_2<0 \}

corresponds to the supercritical bifurcation that generates a stable limit cycle, while the half-line H_{+}=\{(\beta_1,\beta_2): \beta_1=0,\ \beta_2>0 \}
corresponds to the subcritical bifurcation that generates an unstable limit cycle. Two hyperbolic limit cycles (one stable and one unstable) exist in the region between the line H_{+} and the curve LPC=\{(\beta_1,\beta_2): \beta_1= -\frac{1}{4}\beta_2^2 ,\ \beta_2 > 0 \} \ ,
at which two cycles collide and disappear via a saddle-node bifurcation of periodic orbits. The abbreviation LPC stands for 'Limit Point of Cycles'.

Along the curve LPC the system has a unique nonhyperbolic limit cycle with the nontrivial Floquet multiplier +1\ .

The case \sigma=1 can be reduced to the one above by the substitution t \to -t, \ y_2 \to -y_2, \ \beta \to -\beta \ .

Multidimensional Case

In the n-dimensional case with n \geq 2\ , the Jacobian matrix A_0=A(0) at the Bautin bifurcation has

  • a simple pair of purely imaginary eigenvalues \lambda_{1,2}=\pm i \omega_0\ , as well as
  • n_s eigenvalues with {\rm Re}\ \lambda_j < 0\ , and
  • n_u eigenvalues with {\rm Re}\ \lambda_j > 0\ ,

with n_s+n_u+2=n\ . According to the Center Manifold Theorem, there is a family of smooth two-dimensional invariant manifolds W^c_{\alpha} near the origin. The n-dimensional system restricted on W^c_{\alpha} is two-dimensional, hence has the normal form above.

Moreover, under the non-degeneracy conditions (GH.1) and (GH.2), the n-dimensional system is locally topologically equivalent near the origin to the suspension of the normal form by the standard saddle, i.e. \dot{y}_1 = \beta_1 y_1 - y_2 + \beta_2 y_1(y_1^2+y_2^2) + \sigma y_1(y_1^2+y_2^2)^2 \ ,

\dot{y}_2 = y_1 + \beta_1 y_2 + \beta_2 y_2(y_1^2+y_2^2) + \sigma y_2(y_1^2+y_2^2)^2 \ ,
\dot{y}^s = -y^s \ ,
\dot{y}^u = +y^u \ ,
where y \in {\mathbb R}^2\ , y^s \in {\mathbb R}^{n_s}, \ y^u \in {\mathbb R}^{n_u}\ .

Lyapunov Coefficients

The Lyapunov coefficients l_1(\alpha) and l_2(0)\ , which are involved in the nondegeneracy conditions (GH.1) and (GH.2), can be computed for n \geq 2 as follows.

Write the Taylor expansion of f(x,\alpha) at x=0 as f(x,\alpha)=A(\alpha)x + \frac{1}{2}B(x,x,\alpha) + \frac{1}{6}C(x,x,x,\alpha) + O(\|x\|^4),

where B(x,y,\alpha) and C(x,y,z,\alpha) are the multilinear functions with components \ \ B_j(x,y,\alpha) =\sum_{k,l=1}^n \left. \frac{\partial^2 f_j(\xi,\alpha)}{\partial \xi_k \partial \xi_l}\right|_{\xi=0} x_k y_l \ ,
C_j(x,y,z,\alpha) =\sum_{k,l,m=1}^n \left. \frac{\partial^3 f_j(\xi,\alpha)}{\partial \xi_k \partial \xi_l \partial \xi_m}\right|_{\xi=0} x_k y_l z_m \ ,
for j=1,2,\ldots,n\ . Let q_{\alpha}\in {\mathbb C}^n be a complex eigenvector of A(\alpha) corresponding to the eigenvalue \lambda(\alpha)=\mu(\alpha) + i\omega(\alpha)\ : A(\alpha)q_{\alpha}=\lambda(\alpha) q_{\alpha}\ , \langle q_{\alpha}, q_{\alpha} \rangle =1\ . Introduce also the adjoint eigenvector p_{\alpha} \in {\mathbb C}^n\ : A^T(\alpha) p_{\alpha} = \bar{\lambda}(\alpha) p_{\alpha}\ , \langle p_{\alpha}, q_{\alpha} \rangle =1\ . Here \langle p_{\alpha}, q_{\alpha} \rangle = \bar{p}_{\alpha}^Tq_{\alpha} is the inner product in {\mathbb C}^n and the vectors q_{\alpha} and p_{\alpha} can be assumed to depend smoothly on the parameters.

Then l_1(\alpha) = \frac{{\rm Re}\; c_1(\alpha)}{\omega(\alpha)} - \mu(\alpha) \frac{{\rm Im}\; c_1(\alpha)}{\omega^2(\alpha)} \ ,

where \begin{array}{rcl} c_1(\alpha) &=& \frac{1}{2} \left[\langle p_{\alpha},C(q_{\alpha},q_{\alpha},\bar{q}_{\alpha},\alpha) \rangle + 2 \langle p_{\alpha}, B(q_{\alpha},((\lambda(\alpha)+\bar{\lambda}(\alpha))I_n-A(\alpha))^{-1}B(q_{\alpha},\bar{q}_{\alpha},\alpha),\alpha)\rangle + \right. \\ &&~~~\left. \langle p_{\alpha}, B(\bar{q}_{\alpha},(2\lambda(\alpha) I_n-A(\alpha))^{-1} B(q_{\alpha},q_{\alpha},\alpha),\alpha)\rangle \right]. \end{array}
Here I_n is the unit n \times n matrix.

To compute the second Lyapunov coefficient l_2(0) \ , write the Taylor expansion of f(x,0) at x=0 as f(x,0)=A_0x + \frac{1}{2}B_0(x,x) + \frac{1}{6}C_0(x,x,x) + \frac{1}{24} D_0(x,x,x,x) + \frac{1}{120} E_0(x,x,x,x,x) + O(\|x\|^6),

where B_0(x,y)=B(x,y,0),\ C_0(x,y,z)=C(x,y,z,0)\ , and D_0(x,y,z,v) and E_0(x,y,z,v,w) are the multilinear functions with components D_{0,j}(x,y,z,v) =\sum_{k,l,m,p=1}^n \left. \frac{\partial^4 f_j(\xi,0)} {\partial \xi_k \partial \xi_l \partial \xi_m}\right|_{\xi=0} x_k y_l z_m v_p \ ,
C_{0,j}(x,y,z,v,w) =\sum_{k,l,m,p,q=1}^n \left. \frac{\partial^5 f_j(\xi,0)} {\partial \xi_k \partial \xi_l \partial \xi_m \partial \xi_p \partial \xi_q}\right|_{\xi=0} x_k y_l z_m v_p w_q \ ,
for j=1,2,\ldots,n\ .

Then the critical second Lyapunov coefficient is given by l_2(0)=\frac{{\rm Re\ }c_2(0)}{\omega(0)} \ ,

with \begin{array}{rcl} c_2(0)&=&\frac{1}{12}\langle p_0,E_0(q_0,q_0,q_0,\overline{q}_0,\overline{q}_0) + D_0(q_0,q_0,q_0,\overline{h}_{20}) + 3D_0(q_0,\overline{q}_0,\overline{q}_0,h_{20}) +6D_0(q_0,q_0,\overline{q}_0,h_{11}) \\ &&~~~+ C_0(\overline{q}_0,\overline{q}_0,h_{30}) +3C_0(q_0,q_0,\overline{h}_{21})+6C_0(q_0,\overline{q}_0,h_{21}) +3C_0(q_0,\overline{h}_{20},h_{20}) \\ &&~~~+6 C_0(q_0,h_{11},h_{11}) +6C_0(\overline{q}_0,h_{20},h_{11}) + 2B_0(\overline{q}_0,h_{31}) + 3B_0(q_0,h_{22}) \\ &&~~~+B_0(\overline{h}_{20},h_{30})+3B_0(\overline{h}_{21},h_{20}) + 6B_0(h_{11},h_{21}) \rangle , \end{array}
where h_{20} = (2i\omega_0 I_n - A_0)^{-1}B_0(q_0,q_0) \ ,
h_{11}=-A_0^{-1}B_0(q_0,\overline{q}_0) \ .
The complex vector h_{21} is found by solving the nonsingular (n+1)-dimensional complex system \left(\begin{array}{cc} i\omega_0 I_n-A_0 & q_0\\ \overline{p}^{T} & 0 \end{array} \right) \left(\begin{array}{c} h_{21}\\s\end{array}\right)= \left(\begin{array}{c} C_0(q_0,q_0,\overline{q}_0)+B_0(\overline{q}_0,h_{20})+2B_0(q_0,h_{11}) -2c_1(0)q_0\\0\end{array}\right),
while \begin{array}{rcl} h_{30}&=&(3i\omega_0 I_n - A_0)^{-1}[C_0(q_0,q_0,q_0)+3B_0(q_0,h_{20})],\\ h_{31}&=&(2i\omega_0 I_n -A_0)^{-1} [D_0(q_0,q_0,q_0,\overline{q}_0)+3C_0(q_0,q_0,h_{11})+3C_0(q_0,\overline{q}_0,h_{20})\\ &&~~~~~~~~~~~~~~~~~ + 3B_0(h_{20},h_{11}) + B_0(\overline{q}_0,h_{30})+3B_0(q_0,h_{21})-6c_1(0)h_{20}],\\ h_{22}&=&-A_0^{-1}[D_0(q_0,q_0,\overline{q}_0,\overline{q}_0)+4C_0(q_0,\overline{q}_0,h_{11}) +C_0(\overline{q}_0,\overline{q}_0,h_{20}) +C_0(q_0,q_0,\overline{h}_{20}) \\ &&~~~~~~ + 2B_0(h_{11},h_{11})+2B_0(q_0,\overline{h}_{21})+2B_0(\overline{q}_0,h_{21}) + B_0(\overline{h}_{20},h_{20})]. \end{array}

Standard bifurcation software MATCONT computes l_2(0) automatically.

Other Cases

Bautin (GH) bifurcation occurs also in infinitely-dimensional ODEs generated by PDEs and DDEs, to which the Center Manifold Theorem applies.

References

  • V.I. Arnold (1983) Geometrical Methods in the Theory of Ordinary Differential Equations. Grundlehren Math. Wiss., 250, Springer
  • J. Guckenheimer and P. Holmes (1983) Nonlinear Oscillations, Dynamical systems and Bifurcations of Vector Fields. Springer
  • Yu.A. Kuznetsov (2004) Elements of Applied Bifurcation Theory, Springer, 3rd edition.

Internal references

External Links

See Also

Andronov-Hopf Bifurcation, Saddle-node Bifurcation, Saddle-node Bifurcation of Periodic Orbits, Bifurcations, Center Manifold Theorem, Dynamical Systems, Equilibria, MATCONT, Ordinary Differential Equations, XPPAUT

Personal tools
Namespaces

Variants
Actions
Navigation
Focal areas
Activity
Tools