Scholarpedia is supported by Brain Corporation
User:Jan A. Sanders/An Introduction to Leibniz Algebra Cohomology/Lecture 3
Contents |
abstract
In this lecture we define the cohomology modules H^n(\mathfrak{g},\mathfrak{a})
Lifting the representation to the forms
definition
\mathfrak{g} is called a (two-sided) ideal in the \mathfrak{l}\mathfrak{l} if [\mathfrak{l},\mathfrak{g}]\subset \mathfrak{g},\quad [\mathfrak{g},\mathfrak{l}]\subset \mathfrak{g}\ .
example
Let \mathfrak{g}=\ker d_+^{(0)}\ . Then for x\in\mathfrak{l} and y\in\mathfrak{g} one has d_+^{(0)}([x,y])=d_+^{(0)}(x)d_+^{(0)}(y)-d_+^{(0)}(y)d_+^{(0)}(x)=0 d_+^{(0)}([y,x])=d_+^{(0)}(y)d_+^{(0)}(x)-d_+^{(0)}(x)d_+^{(0)}(y)=0 It follows that \mathfrak{g}=\ker d_+^{(0)} is a two-sided ideal in \mathfrak{l}\ . Observe that this proof does not hold in the case of \ker d_-^{(0)}\ .
definition
Let \mathfrak{l} be a \mathfrak{l} and \mathfrak{g} a (two-sided) ideal. Then \mathfrak{l}/\mathfrak{g} is a Leibniz algebra with the bracket [[x],[y]]=[[x,y]] where [x] denotes the equivalence class of x\ . This is well defined, since varying x and y with elements in \mathfrak{g} does not change the answer: [[x],[y]]=[[x+g_1,y+g_2]]=[[x,y]]+[[x,g_2]]+[[g_1,y]]+[[g_1,g_2]]=[[x,y]]
terminology
When \mathfrak{a} is a module and a representation space of \mathfrak{l}\ , one says that \mathfrak{a} is a \mathfrak{l}-module. If the representation is zero, \mathfrak{a} is a trivial \mathfrak{l}-module.
definition
Let \mathfrak{a} be an \mathfrak{l}-module. In order to give a general definition of a coboundary operator d^n , n\geq 0 \ , one defines first an induced left representation on C^n (\mathfrak{g},\mathfrak{a}) as follows. Let, for y\in\mathfrak{l}\ , (d^{(n)}(y)a^n)(x_1,\cdots,x_n)=d_+^{(0)}(y)a^n(x_1,\cdots,x_n)-\sum_{i=1}^n a^n(x_1,\cdots, [y,x_i],\cdots,x_n). This is indeed a representation. Let y,z\in\mathfrak{l}\ . Then d^{(n)}(y)d^{(n)}(z)a^n(x_1,\cdots,x_n)= =d_+^{(0)}(y)d^{(n)}(z)a^n(x_1,\cdots,x_n)-\sum_{i=1}^n d^{(n)}(z) a^n(x_1,\cdots, [y,x_i],\cdots,x_n) =d_+^{(0)}(y)d_+^{(0)}(z)a^n(x_1,\cdots,x_n)-\sum_{i=1}^n d_+^{(0)}(z) a^n(x_1,\cdots, [y,x_i],\cdots,x_n)\ : \[-\sum_{i=1}^n d_+^{(0)}(y) a^n(x_1,\cdots, [z,x_i],\cdots,x_n)+\sum_{ji}a^n(x_1,\cdots,[y,x_i],\cdots, [z,x_j],\cdots,x_n)+a^n(x_1,\cdots, [z,[y,x_i]],\cdots,x_n)\] It follows that d^{(n)}(y)d^{(n)}(z)a^n(x_1,\cdots,x_n)-d^{(n)}(z)d^{(n)}(y)a^n(x_1,\cdots,x_n)= =(d_+^{(0)}(y)d_+^{(0)}(z)-d_+^{(0)}(z)d_+^{(0)}(y))a^n(x_1,\cdots,x_n)+ \sum_{i=1}^n a^n(x_1,\cdots, [z,[y,x_i]],\cdots,x_n)- \sum_{i=1}^n a^n(x_1,\cdots, [y,[z,x_i]],\cdots,x_n) =d_+^{(0)}([y,z])a^n(x_1,\cdots,x_n)-\sum_{i=1}^n a^n(x_1,\cdots, [[y,z],x_i]],\cdots,x_n) =d^{(n)}([y,z])a^n(x_1,\cdots,x_n) or, d^{(n)}([y,z])=d^{(n)}(y)d^{(n)}(z)-d^{(n)}(z)d^{(n)}(y)\ .
remark
Remark that C^n(\mathfrak{g},\mathfrak{a}) is invariant under d_\pm^{(n)}(x) for all x\in\mathfrak{l}\ .
Definition of the coboundary operator.
We now reformulate the definition of d^{i}, i=1,2,3 using the d^{(n)}\ . First we introduce the contraction operator \iota^n(y): C^n(\mathfrak{g},\mathfrak{a})\rightarrow C^{n-1}(\mathfrak{g},\mathfrak{a}) by ( \iota^n(y)a^n)(x_1,\cdots,x_{n-1})=a^n(y,x_1,\cdots,x_{n-1})\ .
Recall the following definitions of the coboundary operators.
- d^0 a^0(x)=d_-^{(0)}(x)a^0\ .
- d^1 a^1(x,y)=d_+^{(0)}(x)a^1(y)-d_-^{(0)}(y)a^1(x)-a^1([x,y])=(d^{(1)}(x)a^1)(y)-d_-^{(0)}(y)\iota^1(x)a^1=(d^{(1)}(x)a^1)(y)-d^0 \iota^1(x)a^1 (y)\ .
- d^2 a^2(x,y,z)=d_+^{(0)}(x)a^2(y,z)-d_+^{(0)}(y)a^2(x,z)+d_-^{(0)}(z)a^2(x,y)-a^2([x,y],z)-a^2(y,[x,z])+a^2(x,[y,z])\ :
- =(d^{(2)}(x)a^2)(y,z)-d^{(1)}(y)\iota^2(x)a^2(z)+d_-^{(0)}(z)\iota^1(y)\iota^2(x)a^2\ :
- =(d^{(2)}(x)a^2)(y,z)-d^1 \iota^2(x)a^2 (y,z)\ .
definition
This strongly suggests the following recursive definition:
- \iota^{1}(x)d^0=d_-^{(0)}(x)
- \iota^{n+1}(x)d^n+d^{n-1}\iota^n(x)=d^{(n)}(x),\quad n>0
lemma
Let y\in\mathfrak{l} and z\in\mathfrak{g}\ . Then
- \iota^n(z)d^{(n)}(y)-d^{(n-1)}(y)\iota^n(z)=-\iota^{n}([y,z]).
proof
Consider (\iota^n(z)d^{(n)}(y)-d^{(n-1)}(y)\iota^n(z))a^n(x_1,\cdots,x_{n-1}) = d^{(n)}(y)a^n(z,x_1,\cdots,x_{n-1})-d^{(n-1)}(y)\iota^n(z)a^n(x_1,\cdots,x_{n-1}) =d_+^{(0)}(y)a^n(z,x_1,\cdots,x_{n-1})-a^n([y,z],x_1,\cdots,x_{n-1})-\sum_{i=1}^{n-1}a^n(z,x_1,\cdots,[y,x_i],\cdots,x_n)\ : -d_+^{(0)}(y)a^n(z,x_1,\cdots,x_n)+\sum_{i=1}^{n-1}a^n(z,x_1,\cdots,[y,x_i],\cdots,x_{n-1}) =-a^n([y,z],x_1,\cdots,x_{n-1}) =-\iota^{n}([y,z])a^n(x_1,\cdots,x_{n-1})\quad\square\ .
lemma
Let y\in\mathfrak{l}\ . Then d^{(n+1)}(y)d^{n}=d^{n}d^{(n)}(y),\quad n\geq 0\ .
proof
For n=0 one has d^{(1)}(x)d^{0}a(y)-d^{0}d_+^{(0)}(x)a(y)=d_+^{(0)}(x)d_-^{(0)}(y)a-d_-^{(0)}([x,y])a-d_-^{(0)}(y)d_+^{(0)}(x)a=0\ . For n>0 one has, with z\in\mathfrak{g} and n>0\ , that \iota^{n+1}(z)(d^{(n+1)}(y)d^{n}-d^{n}d^{(n)}(y))= =-\iota^{n+1}([y,z])d^{n}+d^{(n)}(y)\iota^{n+1}(z)d^n-d^{(n)}(z)d_+^{(n)}(y)+d^{n-1}\iota^{n}(z)d^{(n)}(y) =-\iota^{n+1}([y,z])d^{n}+d^{(n)}(y)(d^{(n)}(z)-d^{n-1}\iota^n(z)-d^{(n)}(z)d^{(n)}(y)+d^{n-1}(d^{(n-1)}(y)\iota^n(z)-\iota^n([y,z])) =-d^{n}([y,z])+d^{(n)}(y)d^{(n)}(z)-d^{(n)}(z)d^{(n)}(y)+(d^{n-1}d^{(n-1)}(y)-d^{(n)}(y)d^{n-1})\iota^n(z) =(d^{n-1}d^{(n-1)}(y)-d^{(n)}(y)d^{n-1})\iota^n(z)\ . This implies the statement of the lemma by induction.\square
The final check is \iota^{n+2}(y)d^{n+1}d^{n}=d^{(n+1)}(y)d^{n}-d^{n}\iota^{n+1}(y)d^{n} =d^{n}d^{(n)}(y)-d^{n}(d^{(n)}(y)-d^{n-1}\iota^{n}(y)) =d^{n}d^{n-1}\iota^{n}(y). Again, since d^1d^0=0\ , it follows by induction that
- d^{n+1}d^{n}=0.
This shows that d^i, i\in\mathbb{N} is a coboundary operator.
proposition
d^n \omega^n(x_1,\cdots,x_{n+1})=\sum_{i=1}^n (-1)^{i-1} d_+^{(0)}(x_i) \omega^n(x_1,\cdots,\hat{x}_i,\cdots,x_{n+1}) +(-1)^n d_-^{(0)}(x_{n+1})\omega^n(x_1,\cdots,x_n) +\sum_{i<j} (-1)^i\omega^n(x_1,\cdots,\hat{x}_i,\cdots,[x_i,x_j],\cdots,x_{n+1})
Cohomology
Define Z^n(\mathfrak{g},\mathfrak{a})=\ker d^n\ , the space of cocycles, and B^n(\mathfrak{g},\mathfrak{a})=\mathrm{im\ }d^{n-1}\ , the space of coboundaries. Since \mathrm{im\ }d^{n-1}\subset\ker d^{n}\ , one can define H^n(\mathfrak{g},\mathfrak{a})=Z^n(\mathfrak{g},\mathfrak{a})/B^n(\mathfrak{g},\mathfrak{a})\ , the n-cohomology module of \mathfrak{g} with values in \mathfrak{a}\ . If a^n\in C^n(\mathfrak{g},\mathfrak{a})\ , the equivalence class in H^n(\mathfrak{g},\mathfrak{a}) is denoted by [a^n]\ . Elements in the zero equivalence class, the image of d^{n-1}\ , are called trivial.
remark
For n=0\ , H^0(\mathfrak{g},\mathfrak{a})=Z^0(\mathfrak{g},\mathfrak{a})=\ker d^0\ , that is, is consists of all elements in \mathfrak{a} which are \mathfrak{g}-invariant. This indicates that computing the cohomology can be a formidable problem, since it contains for instance classical invariant theory. Cohomology theory itself does not provide the answers, it just asks the right questions and removes the trivial answers.
theorem
H^n(\mathfrak{g},\mathfrak{a}), n>0 , is invariant under the action (by d^{(n)}) of \mathfrak{g}\ . So one could say that H^n(\mathfrak{g},\mathfrak{a}) is a trivial \mathfrak{g}-module and an \mathfrak{l}/\mathfrak{g}-module.
proof
Indeed, since d^n a^n=0\ , d^{(n)}(y)[a^n]=[d^{(n)}(y)a^n]=[\iota^{n+1}(y)d^{n}a^n+d^{n-1}\iota^{n}(y)a^n]=[0].\quad\square
scaling lemma
Suppose there exists an element s\in\mathfrak{g} such that d^{(n)}(s)a^n=\lambda(a^n)a^n\ , with \lambda\in C^1(C^n(\mathfrak{g},\mathfrak{a}),R) and R the ring of the module \mathfrak{a}\ . Then for a^n\in Z^n(\mathfrak{g},\mathfrak{a}) one has \lambda(a^n)a^n=d^{(n)}(s)a^n=d^{n-1}\iota^n(s)a^n\ , that is, if \lambda(a^n) is invertible, then a^n=d^{n-1}\lambda(a^n)^{-1}\iota^n(s)a^n\in B^n(\mathfrak{g},\mathfrak{a})\ .
In practice, this is very useful in computing cohomology, since it allows one to restrict the attention to those a^n\in Z^n(\mathfrak{g},\mathfrak{a}) which have a noninvertible \lambda(a^n)\ . Notice that the argument does not work for s\in\mathfrak{l}\ .
the homotopy formula
If R equals \R or \mathbb{C} there is an explicit formula, the homotopy formula, to compute the preimage, at least on the span of the eigenforms. Let d^{(n)}(s_0) a_\iota^n=\lambda_\iota a_\iota^n and let S be the span of all such a_\iota^n\in Z^n(\mathfrak{g},\mathfrak{a}) with \lambda_\iota\neq 0\ . Then if a^n\in S\ , one defines \tau^{s_0}a_\iota^n=\tau^{\lambda_\iota}a_\iota^n\ . This defines \tau^{s_0}a^n by linearity. Let P a^n = \left.\int \tau^{s_0} a^n \frac{d\tau}{\tau}\right|_{\tau=1}\ .
Then for a^n\in S one has a^n=d^{n-1} \iota(s_0)P a^n\ . Here the meaning of the integral is \int \frac{d\tau}{\tau}=\log(\tau) and with \lambda\neq 0\ , \int \tau^\lambda\frac{d\tau}{\tau}=\frac{1}{\lambda}\tau^\lambda.
proof
Let a^n=\sum_\iota \alpha_\iota a_\iota^n\ . Then d^{n-1} \iota(s_0)P a^n=d^{n-1} \iota(s_0)\sum_\iota \alpha_\iota P a_\iota^n\ : =d^{n-1} \iota(s_0)\sum_{\iota} \alpha_\iota \frac{1}{\lambda_\iota} a_\iota^n\ : =\sum_{\iota} \alpha_\iota a_\iota^n\ : = a^n