Loading [MathJax]/jax/output/HTML-CSS/jax.js

Scholarpedia is supported by Brain Corporation

User:Jan A. Sanders/An Introduction to Leibniz Algebra Cohomology/Lecture 7

From Scholarpedia
Jump to: navigation, search

    Back to the sixth lecture

    On to the eigth lecture

    Contents

    Spectral sequences

    In the examples, one uses K^{p,n}=F^pC^n(\mathfrak{g},\mathfrak{a})\ , but in the construction of the spectral sequence one only assumes K^{p,n}\supset K^{p+1,n} and d^n K^{p,n}\subset K^{p,n+1}\ .

    definition

    Let Z_p^{r,n}=K^{p,n} for r\leq 0\ , Z_p^{r,n}=\{a^n\in K^{p,n}| d^n a^n\in K^{p+r,n+1}\} for r>0\ .

    remark

    If p>n then Z_p^{r,n}=0\ .

    proposition

    Z_0^{1,0}=\mathfrak{a}^\mathfrak{h}=H^0(\mathfrak{g},\mathfrak{a})\ , where \mathfrak{a}^\mathfrak{h} denote the \mathfrak{h}-invariant elements (under d_-^{(0)}) in \mathfrak{a}\ .

    proof

    a^0\in Z_0^{1,0} implies d^0a^0 \in F^1 C^1(\mathfrak{g},\mathfrak{a})\ , that is, for y\in\mathfrak{h} one has d_-^{(0)}(y)a^0=d^0a^0(y)=0\ .

    proposition

    Z_1^{1,1} \subset F^1 C^1(\mathfrak{g},\mathfrak{a}^\mathfrak{h})

    proof

    a^1\in Z_1^{1,1} implies that for x\in\mathfrak{g}, y\in \mathfrak{h} one has, since d^1 a^1\in F^2 C^2(\mathfrak{g},\mathfrak{a})\ , 0=d^1a^1(x,y)=d_+^{(0)}(x)a^1(y)-d_-^{(0)}(y)a^1(x)-a^1([x,y])=-d_-^{(0)}(y)a^1(x)\ .

    proposition

    Z_{p+1}^{r-1,n}\subset Z_p^{r,n}

    proof

    Let a^n\in Z_{p+1}^{r-1,n}\ . Then a^n\in K^{p+1,n}\subset K^{p,n} and d^n a^n \in K^{p+r,n+1}\ . But this immediately implies that a^n\in Z_p^{r,n}\ .

    proposition

    d^{n-1} Z_{p-r+1}^{r-1,n-1}\subset Z_p^{r,n}

    proof

    Let a^{n}\in d^{n-1} Z_{p-r+1}^{r-1,n-1}\ . Then one can write a^n as d^{n-1}a^{n-1}\ , with a^{n-1}\in Z_{p-r+1}^{r-1,n-1}\ , that is to say, a^{n-1}\in K^{p-r+1,n-1} and a^n=d^{n-1}a^{n-1}\in K^{p,n}\ . Since d^na^n=d^n d^{n-1}a^{n-1}=0\ , it follows that a^n\in Z_p^{r,n}\ .

    definition

    E_p^{r,n}=Z_p^{r,n}/(d^{n-1} Z_{p-r+1}^{r-1,n-1}+Z_{p+1}^{r-1,n})

    remark

    In particular, E_p^{0,n}=Z_p^{0,n}/Z_{p+1}^{0,n}\ , that is, the graded version of the filtered sequence K^{p,n}\ .

    theorem

    On E_\cdot^{r,n} there is an induced coboundary operator \delta_r^1 such that H^p(E_\cdot^{r,n},\delta_r^1)=E_p^{r+1,n} This means that E_\cdot^{r,n} is a spectral sequence.

    proof

    d^n maps Z_p^{r,n} to Z_{p+r}^{r,n+1} and d^{n-1} Z_{p-r+1}^{r-1,n-1}+Z_{p+1}^{r-1,n} to d^{n} Z_{p+1}^{r-1,n}\ . Let [a^n]\in E_p^{r,n}\ . Define \delta_r^1[a^n]=[d^n a^n] One has [d^n a^n]\in E_{p+r}^{r,n+1}\ . Suppose [a^n] is a cocycle. This means that d^na^n\in d^{n} Z_{p+1}^{r-1,n}+Z_{p+r+1}^{r-1,n+1}\ . That is, there exist \tilde{a}^n \in Z_{p+1}^{r-1,n} and a^{n+1}\in Z_{p+r+1}^{r-1,n+1} such that d^n a^n=d^n \tilde{a}^n+a^{n+1}\ . Let \bar{a}^n=a^n-\tilde{a}^n\in Z_p^{r,n}+Z_{p+1}^{r-1,n} \subset K^{p,n}\ , with d^n \bar{a}^n=a^{n+1}\in Z_{p+r+1}^{r-1,n+1}\in K^{p+r+1,n+1}\ . Therefore \bar{a}^n \in Z_{p}^{r+1,n}\ . This implies that a^n=\bar{a}^n+\tilde{a}^n\in Z_{p}^{r+1,n}+Z_{p+1}^{r-1,n}\ .

    It follows that Z^p(E_\cdot^{r,n},\delta_r^1)=(Z_{p}^{r+1,n}+Z_{p+1}^{r-1,n})/(d^{n-1} Z_{p-r+1}^{r-1,n-1}+Z_{p+1}^{r-1,n}) The p-coboundaries consist of the elements of d^{n-1} Z_{p-r}^{r,n-1}\ , and one has B^p(E_\cdot^{r,n},\delta_r^1)=(d^{n-1} Z_{p-r}^{r,n-1}+Z_{p+1}^{r-1,n})/(d^{n-1} Z_{p-r+1}^{r-1,n-1}+Z_{p+1}^{r-1,n})

    Noether isomorphism

    If W\subset U then U/(W+U\cap V)\simeq (U+V)/(W+V) and (M/V)/(U/V)=M/U\ .

    It follows that H^p(E_\cdot^{r,n},\delta_r^1)=(Z_{p}^{r+1,n}+Z_{p+1}^{r-1,n})/(d^{n-1} Z_{p-r}^{r,n-1}+Z_{p+1}^{r-1,n})

    proposition

    d^{n-1} Z_{p-r}^{r,n-1}\subset Z_p^{r+1,n}\ .

    proof

    Let a^n \in d^{n-1} Z_{p-r}^{r,n-1}\ . Then a^n=d^{n-1} a^{n-1} with a^{n-1}\in Z_{p-r}^{r,n-1}\ . Therefore a^n\in Z_p^{r+1,n}\ , since d^n a^n=0.\square

    It follows that H^p(E_\cdot^{r,n},\delta_r^1)=Z_{p}^{r+1,n}/(d^{n-1} Z_{p-r}^{r,n-1}+Z_{p}^{r+1,n}\cap Z_{p+1}^{r-1,n})

    proposition

    Z_p^{r+1,n}\cap Z_{p+1}^{r-1,n}=Z_{p+1}^{r,n}\ .

    proof

    Let a^n\in Z_p^{r+1,n}\cap Z_{p+1}^{r-1,n}\ . Then a^n\in K^{p+1,n} and d^n a^n \in F^{p+r+1} C^{n+1}(\mathfrak{g},\mathfrak{a})\ . This implies a^n\in Z_{p+1}^{r,n}\ . On the other hand, if a^n\in Z_{p+1}^{r,n}\ , we have a^n\in K^{p+1,n}\subset F^p C^n(\mathfrak{g},\mathfrak{a}) and d^na^n \in K^{p+r+1,n+1}\subset K^{p+r,n+1}\ . Thus, a^n \in K^{p,n} and d^na^n \in K^{p+r+1,n+1}\ , implying a^n\in Z_p^{r+1,n}\ .

    Furthermore, a^n \in K^{p+1,n} and d^na^n \in K^{p+r,n+1}\ , implying a^n\in Z_{p+1}^{r-1,n}\ . The result follows. \square

    corollary

    H^p(E_\cdot^{r,n},\delta_r^1)=Z_{p}^{r+1,n}/(d^{n-1} Z_{p-r}^{r,n-1}+Z_{p+1}^{r,n})=E_p^{r+1,n} This proves the theorem.



    Back to the sixth lecture

    On to the eigth lecture

    Personal tools
    Namespaces

    Variants
    Actions
    Navigation
    Focal areas
    Activity
    Tools